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Abstract This work proposes the use of generative adversarial networks
(GANs) for data augmentation in order to train and improve the perfor-
mance of convolutional neural networks in person re-identification tasks.
The methodology is based on the StyleGAN model, which is capable
of generating synthetic images of people with specific desired features,
called styles. The main motivation is to study the capacity of GANs
to generate synthetic images that can increase the number of images
available to train a convolutional neural network from a limited number
of them. A convolutional neural network for person re-identification in
images obtained from multiple cameras located in different places will
be used as a case study. The problem of person re-identification is cur-
rently of interest for the development of more precise video surveillance
systems.
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Chapter 1

Introduction

Person re-identification is a technique used in the field of artificial intelligence
and machine learning to recognize a person in different images or videos, even
if they have different angles, lighting, or clothing. This technique is used in
various applications, such as security surveillance, identification of people in
digital images, and analysis of behaviors in videos. It is based on the use
of machine learning models that learn to recognize the characteristics that
identify a person in different images or videos. These models are trained with
a dataset that contains images or videos of people, along with information
about the characteristics that identify each person. Person re-identification
can be challenging due to the variability of the characteristics that identify a
person, such as clothing, hairstyle, and other aspects that can change their
appearance. Additionally, it can be a challenge if there is a limited amount
of training data due to the privacy of people appearing in images or videos.
To overcome these challenges, image and video pre-processing techniques, as
well as deep learning techniques, can be used to allow the model to adapt to
variations in a person’s appearance and recognize relevant features in low-
quality images or videos.

Currently, the most prominent training datasets for person re-identification
are very limited because they do not contain a large number of images. For
example, Market1501 includes only 1501 people recorded with 6 different
cameras, while DukeMTMC-reID has 702 people in 8 different cameras. As
shown in Fig. 1.1, various challenges are present for person re-identification
in images, such as low image resolution, variations in lighting and contrast,
as well as other factors that complicate the task, such as changes in cloth-
ing, the presence of objects like backpacks or sweaters, and the presence of
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2 CHAPTER 1. INTRODUCTION

obstacles or people in the background that limit visibility of the person of
interest in an open space.

Figure 1.1: Example of images obtained by security cameras. The green
boxes indicate images corresponding to the same person.

This study investigates the use of a generative adversarial network, along
with data augmentation techniques, to train a person re-identification model.
The generative adversarial network is a type of machine learning model that
is used to generate synthetic images or videos that can be used as additional
training data. Various techniques for expanding training data are analyzed,
such as image generation and feature expansion, and their effectiveness in
training a person re-identification model using a generative adversarial net-
work is evaluated. Additionally, the results obtained with a model trained
with non-expanded data are compared.

1.1 Objectives

The general objective of this research is to generate artificial person images
from a reduced set of training images to improve the performance in person
re-identification models.



1.2. THESIS ORGANIZATION 3

1.1.1 Specific objectives

The specific objectives are as follows:

1. Investigate data augmentation techniques for training a person re-
identification model.

2. Analyze the use of a generative adversarial network to generate syn-
thetic images that can be used as additional training data for a person
re-identification model.

3. Evaluate the effectiveness of data augmentation techniques and the gen-
erative adversarial network in training a person re-identification model.

4. Contribute to the development of person re-identification techniques
and provide a basis for future research in this area.

1.2 Thesis Organization

• Chapter 1 - Introduction

The introduction chapter of this thesis aims to present the context
and general objective of the research. First, the context in which the
thesis is developed is presented, including a brief description of the field
of person re-identification and its importance in applications such as
security surveillance and analysis of behaviors in videos.

• Chapter 2 - State of the Art

The objective of this chapter is to present a review of the relevant lit-
erature in the field of person re-identification and the use of generative
adversarial networks to expand training data.

• Chapter 3 - Theoretical Framework

This chapter presents the theoretical framework in which the research
is developed. First, a review of the basic concepts of generative ad-
versarial networks is presented, including a description of how these
networks are used to generate synthetic images that can be used as
additional training data. Second, a review of the basic concepts in the
field of person re-identification is presented, including a description of
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the techniques used to recognize a person in different images or videos,
as well as the challenges faced in this task.

• Chapter 4 - Methodology

The data analysis methodology used is described, including the data
augmentation techniques used, as well as the methodology for evaluat-
ing the performance of a person re-identification model.

• Chapter 5 - Experimental Results

First, the results of the application of data augmentation techniques
in the dataset used in the research, including the number of generated
augmented data, are presented. Second, the results of the evaluation
of the performance of a person re-identification model trained with
augmented data using a generative adversarial network are presented.
Third, the results obtained with a model trained with non-expanded
data are compared, and the differences in performance between both
models are analyzed.

• Chapter 6 - Conclusions and Future Work

The objective of this chapter is to present the conclusions obtained in
the research and propose future work. The general conclusions of the
research are presented, including a summary of the results obtained and
a discussion of their significance and relevance in the field of person re-
identification and the use of generative adversarial networks to expand
training data, as well as the limitations of the research. Future lines
of work are proposed to overcome these limitations and continue the
development of research in this area.



Chapter 2

State of the art

The 2014 article ”Generative Adversarial Networks” by Ian Goodfellow et
al. (10) presents a new class of neural networks called generative adversarial
networks (GANs). These networks are a type of machine learning model
used to generate synthetic images or videos from a data set. GANs are
made up of two neural networks trained simultaneously, a generator and a
discriminator. The generator network is responsible for generating synthetic
images or videos, while the discriminator network evaluates the quality of the
images or videos generated by the generator network. The purpose of gen-
erative adversarial networks is for the generator network to produce images
or videos with a high degree of similarity to real objects and scenarios, such
that the discriminator network cannot differentiate between authentic images
or videos and those generated synthetically by the generator network. The
article presents experiments demonstrating the ability of GANs to generate
high-quality synthetic images or videos, and discusses the potential of these
networks in applications such as 3D image generation, improving image or
video quality, and analyzing behaviors in videos.

Since this initial article, new architectures have been developed that im-
prove the quality of generated images, such as the architecture proposed in
2017, CycleGan (11), which is capable of improving the quality of generated
images by transferring the style or domain of one group of images to an-
other group using two generative adversarial networks. Due to the improved
performance of generative adversarial networks, they are now being used to
increase the training data that enable the improvement of performance in
machine learning models where databases are limited. In this case, as can be
seen in Fig. 2.4, there has been a notable increase in the study of the use of

5
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generative adversarial networks to increase training data in re-identification
models since 2018.

The articles have been grouped into four categories corresponding to dif-
ferent methods used for the generation of new artificial images.

• Style transfer between different domains

Using a real input image, artificial images can be generated using dif-
ferent styles or domains with which the model has been trained. This
enables the transfer of the style of one data set to another, such as
the transfer of the style of a painting to a real photograph. In the
generated images, changes can be observed with respect to the original
image, such as colors, tones, lighting, among others, but there is no
change in the structure of the image (see Fig. 2.1).

• Posture modification

The goal of these networks is to enable the generator network to pro-
duce images of people in various postures that are indistinguishable
from real images in the data set used for training. A real image of a
person and a heat or joint map corresponding to a different posture
skeleton are used as input. This way, it is possible to expand the train-
ing data set of a person re-identification model by adding images with
varied postures of the same person (see Fig. 2.2).

• Random artificial images

Artificial images are generated randomly and labeling techniques are
applied to them (see Fig. 2.3).

• State of the art review

State of the art writings are used by researchers and professionals to
obtain a general overview of a field of study and to identify the main
trends and challenges in that field. They are also used as a basis for
designing new research and projects. In this case, we focus on articles
on the state of the art that focus on the specific topic of the use of
generative adversarial networks to increase training data in person re-
identification models.
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Figure 2.1: Style transfer. New images with different styles are generated
through an input image.
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Figure 2.2: Posture modification. A new image of a person with the given
posture is generated through an input image and the heat map of the posture.

Figure 2.3: On the left, real images from the Market-1501 database (1). On
the right, artificial images generated with Stylegan3 (2).
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2.1 Style transfer between different domains

Images obtained from cameras often have different resolutions or positions.
This can cause changes in lighting and tonality among other aspects. One
way to generate new data is through domain transfer or domain adaptation,
which is based on the idea of transferring the style of one or more images to
other images (Fig. 2.5) without modifying the image structure or background.
This means that there is no change in the pixel positions, leaving the images
exactly the same.

Figure 2.5: Style transfer. Given an input image, its style, tonality, contrast,
and illumination are modified based on the styles of other cameras without
changing the structure.

In the literature on style transfer, several ways of tackling the problem can
be found. In 2017, the architecture of a generative adversarial network called
CycleGAN (11) appeared, which can learn the style of one or more images and
transfer it to other different images, i.e., transfer the style from one domain
to another. This was a milestone within generative adversarial networks, and
from 2018 onwards, many works using this architecture began to appear, such
as the work of Zhun Zhong et al.(3), where they propose CamStyle, a method
that uses the CycleGAN generative adversarial network architecture(11) to
transfer the style from one security camera to another. This can only transfer
the style between two domains, limiting the architecture in such a way that
it is necessary to generate a model for each pair of security cameras.
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Figure 2.6: Applying CamStyle (3) to 2 domains. Images from domain A are
converted to domain B and vice versa.

Following the same philosophy of transferring the style from one to an-
other, in 2018 Pingyang Dai et al.(12) proposed the cmGAN model focused
on style transfer to convert RGB and infrared camera images. This was
the first article to use the RGB-Infrared Cross-Modality Re-ID Dataset(13),
which includes images from four infrared and two RGB cameras. In this case,
the discriminator of the generative adversarial network is part of the feature
extractor of the re-identification model. The input to the re-identification
model will be an infrared image, and it should look for that person within
the RGB images. In the previous articles, we encounter the limitation of
transferring the style from one domain A to another domain B, requiring
the duplication of the project for each different style. This, added to one
of the biggest challenges faced by re-identification models, which is the low
performance obtained when using images from another database in the tests
of the re-identification model. Based on these problems, some works pro-
pose domain transfer between different databases and/or multiple domains
(Fig. 2.7).

In 2018, as an improvement to the Camstyle architecture and in search of
better performance when using the model on different databases, the M2M-
GAN architecture was proposed (14). This architecture classifies the images
of each database into subdomains, i.e., for each camera. It can transfer the
sub-domain of domain A to a sub-domain of domain B, with supervised train-
ing and requiring all data from different databases to be manually labeled.
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Figure 2.7: Examples of images from different databases. Market-1501 (1),
DukeMTMC-ReID (4), CUHK03 (5), and VIPeR (6).

On the other hand, in the work of Weijian Deng et al.(15), they attempted
to globalize the model by developing the SPGAN architecture, which trans-
fers images from the style of one database to another. It is trained in an
unsupervised manner and consists of a siamese network(16) (SiaNet) and a
CycleGAN (11). Similarly, Shuren Zhou et al.(17) proposed the CTGAN ar-
chitecture, which reduces complexity by transferring styles from one domain
to multiple domains in another database using only one generator and dis-
criminator model. In this case, they used the architecture of a StarGAN(18)
generative adversarial network.

Following this line of work, in 2020, Yingzhi Tang et al. proposed the
CGAN-TM architecture (19), which converts images from one database to
another using a CycleGAN (11) as a generative adversarial network. The
innovation in this work is the use of Self-Labeled Triplet Net, which labels
the generated artificial images to train the re-identification model in an un-
supervised manner.

In the same year, Yacine Khraimeche et al. (20) presented the UD-GAN
technique, which aims to improve the performance of the re-identification
model through training with a database that contains labeled data and sub-
sequently evaluating it on a different database that lacks labeled data.
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Starting in 2019, more sophisticated architectures began to appear, such
as the one proposed by Zhedong Zheng et al.(7). DG-NET uses two encoders
that can extract the colors, appearance, and transfer those colors to another
image where the person’s structure has been extracted (Fig.2.8). This model
also uses the generative adversarial network architecture as a re-identification
model.

Figure 2.8: Example of DG-GAN (7). Style transfer, transfers the appear-
ance of the left image to all the images on the right, combining appearance
and structure.

At the beginning of 2020, Rui Sun et al.(21) proposed the cTransNet ar-
chitecture, based on the StarGAN(18) generative adversarial network. The
goal of this architecture is to develop a single generator capable of generating
multiple images from an input image, with the different styles of each cam-
era. On the other hand, Yang Yang et al. (22) proposed the Color Trans-
lation GAN (CTGAN) architecture in their work “Color-Sensitive Person
Re-Identification”, which focuses on distinguishing between different cloth-
ing colors while maintaining person identity coherence with the color of their
clothes. CTGAN is capable of identifying and modifying the colors of upper
clothing (such as hoodies or shirts) and lower clothing (such as pants).

Chong Liu et al.(23) proposed UnityGAN, which generates artificial im-
ages in a style that is a combination of all the other styles, without the
need to learn to transfer by pairs. It eliminates differences between styles,
leaving a unique style. The architecture is based on DiscoGAN(24) and Cy-
cleGAN (11).

In recent years, semi-supervised and unsupervised models have appeared
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due to the difficulty of obtaining a large number of labeled images for re-
identification models. In 2020, Xinyu Zhang et al.(25) proposed SECGAN,
similarity-embedded CycleGANs(11). Due to the limitation of labeled data,
this semi-supervised method trains with labeled and unlabeled data alter-
nately and uses both encoders from each of the cameras, A and B, as dis-
criminatory feature extractors.

The following works make use of labeled images to transfer their style
to an unlabeled domain. In 2021, Zhiqi Pang et al.(26) presented a hybrid
method that combines supervised and unsupervised techniques. This method
uses a TC-GAN architecture to generate labeled artificial images and transfer
the person from the input image to the background of the desired style im-
age. Additionally, the authors propose the DFE-Net re-identification model,
which employs a modified version of the ResNet-50(27) network pre-trained
on the ImageNet (28) dataset, with both real and artificially generated images
as inputs. The network is used as a feature extractor for image comparison.
Also in 2021, Yuanyuan Li et al.(29) proposed the use of a CycleGAN(11)
and a siamese neural network (16). In this case, labeled data is used as
the input domain and the styles of images from an unlabeled domain are
transferred. Finally, Xianjun Luo et al.(30) propose the FFGAN architec-
ture. The CycleGAN(11) architecture is used to generate artificial images.
The innovation of the work is found in the re-identification model, which is
capable of extracting the local, global, and semantic characteristics of each
image to improve model performance.
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Year Name GAN Model Transfer Database Github

2018 CamStyle (3) CycleGAN 1 to 1 Same/Different Yes
2018 cmGAN (12) New 1 to 1 Same No
2018 M2M-GAN (14) New Many to Many Different No
2018 SPGAN (15) SiaNet CycleGAN 1 to 1 Different No
2019 CTGAN (17) StarGAN 1 to 1 Different No
2019 DG-NET (7) New Combinations Same No
2019 CTGAN (22) New Combinations Same No
2020 CGAN-TM (19) CycleGAN 1 to 1 Different No
2020 UD-GAN (20) New 1 to 1 Different No
2020 cTransNet (21) StarGAN 1 to Many Same No
2020 UnityGAN (23) DiscoGAN/CycleGAN 1 to Generic Same No
2020 SECGAN (25) CycleGAN 1 to 1 Same No
2021 TC-GAN (26) New 1 to 1 Same No
2021 STrans (29) New 1 to Generic Same No
2021 FFGAN (30) CycleGAN 1 to 1 Same No

Table 2.1: Table with all proposed network architectures. (Year) publication
year, (Name) name of the proposed architecture, (GAN Model) whether they
use or are based on an existing generative adversarial network, (Transfer) the
domains between which styles are transferred, and (Database) whether the
model has been globalized, i.e., whether training was done with one database
and testing with another.
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2.2 Pose modification

Person re-identification presents one of the biggest challenges due to the
significant variation in a person’s pose across different cameras. To address
this issue, generating new data of the same person by modifying their pose
using various architectures is proposed. The generation of new data is based
on extracting the person from the original image, which can be done by
obtaining the joints or heatmaps (Fig. 2.9), and adapting it to the desired
pose to increase the quantity and variability of available data.

Figure 2.9: Types of pose extraction. By joints or heatmaps.

In 2018, Xuelin Qian et al.(31) presented the PN-GAN architecture, ca-
pable of generating artificial images of a person in eight different poses. The
eight canonical poses were obtained using the K-Means algorithm on the dis-
tribution of all images in the database. The Open Pose tool(32) was used to
generate the template, which detects 18 human body joints and their con-
nections, and by the joint map of both images, it is possible to transfer the
pose of each of the eight canonical poses to the input images, as shown in
Fig. 2.10.

In a similar work, Aliaksandr Siarohin et al.(33) proposed the Deformable
GAN, with the aim of generalizing the previous model. To do this, the model
had to be trained in a supervised manner with pairs of images of the same
person in different poses. They also used the Open Pose(32) method to
obtain the human body joint map, decomposing it into 18 joints and a total
of 10 subdivisions, head, torso, both arms, and legs. This model allowed
transferring the pose of a person in an image A to another person in an
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image B.
In another work, Yaoyu Li et al.(34) also used Open Pose(32) as a joint

and color map extractor with 19 locations in different body parts, which
provided robustness to the model. The training was done with pairs of images
of the same person in different poses, similar to the previous work. The
architecture allowed transferring the pose of one image to another.

Figure 2.10: Posture transformation using a template.

In the 2018 article by Yixiao Ge et al.(35), the FD-GAN architecture
was proposed for transferring the posture of one image to another. The
network consisted of a generator and two discriminators, one for the person’s
identity and the other for the posture, where they used the PatchGAN(36)
architecture. Using a ResNet-50, they extracted a feature vector from the
input image. For the target posture, they used an 18-channel map, where
each represents the location of a posture reference point and converted it to
a Gaussian heatmap. Subsequently, it was converted to a feature vector of
size 128, and with these two data, the model generated a new image of the
same person with the specified posture in the heatmap.

In 2019, Alessandro Borgia et al.(37), following the same line as the pre-
vious architectures, extracted the joints using the Open Pose(32) method,
proposed an architecture that, instead of evaluating a specific image, evalu-
ates the video sequences of a person’s movement. Eight canonical postures
are predefined, three facing forward, three facing backward, one looking side-
ways to the right, and one to the left. First, the video sequences of a person
are obtained, and the corresponding images with the canonical postures are
searched by Euclidean distance. If one of those eight postures does not exist,
the artificial image is generated. The same occurs with all the people in the
video, their sequences are obtained, and if there is no canonical position,
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it generates one. By cosine distance, they compare the eight correspond-
ing images with the eight canonical postures of the input person with all
other people’s image sequences. A classification is made, and the one with
the lowest cosine distance is assigned as if it were the same person in the
re-identification model.

In 2020, Chengyuan Zhang and other authors (38) presented the PAC-
GANmodel, composed of two parts. In the first part, CPG-Net, a conditional
GAN is used to generate images of a person from camera A and then convert
them to the viewpoint of camera B. New images with postures from differ-
ent viewpoints of different cameras are also generated, thus increasing the
amount of data. The model is trained with the joints extracted by Open
Pose and the image itself. In the second part, they use Cross-GAN (39),
developed by the same team, as a re-identification model. In Y. Zhang et
al.(40) work, they propose PGAN. In this case, the posture is obtained with
a heatmap, and by using two input images, they transfer the posture from
one to another. This architecture improves the performance obtained with
the 2018 FD-GAN(35) architecture.

In 2021, Ni Ziyang et al.(41) proposed a new architecture capable of
correcting images so that the people appearing in them are centered and
straight. To do so, the database was trained with images that indicated the
correct position of the people. Additionally, in that same year, Hao Chen et
al.(42) proposed the GLD architecture of the generative adversarial network,
which uses a three-dimensional mesh that represents different postures and
is capable of generating a new image of the same input person with the
corresponding posture.
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Year Name Pose extractor Num. poses Database Github

2018 PN-GAN (31)(3) Open Pose 8 Same Yes
2018 Deformable GAN(33) Open Pose Other image Same Yes
2018 Yaoyu Li et al.(34) Open Pose Other image Same No
2018 FD-GAN(35) Open Pose Other image Same Yes
2019 Pose-aware Regulation (37) Open Pose 8 Same No
2020 PAC-GAN (38) Open Pose Other images Same No
2020 PGAN (40) Open Pose Other images Same Yes
2021 Ni Ziyang et al.(41) None None Same No
2021 GLD(42) 3D mesh Not specified Same Yes

Table 2.2: Summary of all proposed architectures. (Year) presentation date
of the article, (Name) name of the proposed architecture, (Pose extractor)
method used to extract pose, (Num. poses) number of poses generated,
(Database) whether the model has been globalized, i.e., if training was done
with one dataset and testing with another.
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2.3 Random Artificial Images

This section includes articles that generate random images of people with dif-
ferent poses, lighting, colors, and backgrounds (see Fig. 2.3). These images
are labeled with different methods for the re-identification model training.
Firstly, we will detail the articles where the 1980 LSR (Label Smooth Regu-
larization) algorithm is used as a basis for labeling artificial images, which
was first applied to a classification problem by Christian Szegedy et al. in
2015.

In 2017, the first work was presented where the re-identification model was
trained with randomly generated images. Zhedong Zheng et al.(43) used the
generative adversarial network proposed in 2016, DCGAN(44), to generate
random data and labeled it with a technique they call LSRO (see Fig.2.11),
label smoothing regularization for outliers, which is a modification of the work
by Christian Szegedy et al.(45). This technique assigns the same value to
the generated artificial image in all classes, i.e., it is uniformly distributed
across all classes.

In 2019, Yan Huang et al.(46) presented MpRL, Multi-pseudo Regularized
Label (see Fig.2.11). Unlike the previous work, this method generates a label
based on the probability of similarity with each of the training classes. They
use DCGAN (44) as the generative adversarial network. In the same year,
Jean-Paul Ainam et al.(47) proposed to cluster images from the database
using the K-Means classification algorithm for the training of the DCGAN
generative adversarial network. They also propose a new labeling technique,
SLSR Sparse Label Smoothing Regularization (see Fig.2.11), which labels ar-
tificial images with a partial distribution based on the group from which
they were generated using the K-Means algorithm. The labeling technique
is used to classify images in the database into different categories, such as
gender, age, or clothing type. The LSRO (Label Smoothing Regularization
Optimization) labeling technique has been widely used in the field of person
re-identification but may have some problems, such as the creation of am-
biguous or incorrect labels. The SLSR technique proposed in this work aims
to solve these problems. Instead of creating precise labels for each image,
SLSR labels images with a partial distribution. This means that the label for
each image is based on the group to which that image belongs, rather than a
precise label. This technique reduces ambiguity and the creation of incorrect
labels. Regarding the LSR labeling process, Saleh Hussin et al., 2021 (48),
propose the use of the StyleGAN generative network (8) for creating new
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data. To do so, they train with one of the most commonly used datasets in
the field of person re-identification, and once the new images are generated,
they apply the LSRO method (see Fig.2.11), proposed by Zhedong Zheng et
al., 2017(43), as explained earlier.

Figure 2.11: Different types of labeling. Top left: labeling of a real image
corresponding to a person. LSRO: proportional labeling, k = number of
classes. MpRL: labeling based on similarity. SLSR: proportional labeling
based on the group to which the person belongs, pc = distribution in the
classes of the group to which they belong.

In 2019, Chanho Eom et al., 2021 (49) proposed a new architecture of
generative adversarial network, IS-GAN, identity shuffle GAN, where arti-
ficial images are generated through interpolation between two real images,
distinguishing between the upper and lower parts. The labels for the artificial
image are the images that have generated the interpolation.

Lastly, in 2021, Limin Xia et al., 2021 (50) proposed a new architecture
of generative adversarial network. Firstly, they propose the MSSR model
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(Mixed-Space Super-Resolution model) which improves the resolution of input
images. They use the PGCN architecture (Part-based Graph Convolutional
Network) to generate artificial images, and with the same network, they
generate soft multi-labels for the artificial images.

Year Paper GAN Model Labeling Github Github

2017 Zhedong Zheng et al.(43) DCGAN LSRO Yes Yes
2019 Yan Huang et al.(46) DCGAN MpRL No No
2019 Jean-Paul Ainam et al.(47) DCGAN SLSR Yes Yes
2019 Chanho Eom et al.(49) IS-GAN Interpolation Yes Yes
2021 Saleh Hussin et al.(48) StyleGAN LSRO No No
2021 Limin Xia et al., 2021(50) PGCN Soft Multi-Labels No No

Table 2.3: Table with all proposed network architectures. (Year) year of
paper publication, (Paper) name of proposed architecture, (GAN Model)
whether or not they use or are based on an existing generative adversarial
network, (Labeling) labeling technique used, (Github) whether or not the
code is available on Github.
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2.4 State-of-the-art Reviews

In recent years, there has been a great interest in the use of generative adver-
sarial networks in person re-identification models. In 2019, Hamed Alqahtani
et al.(51) provided a detailed introduction to the state-of-the-art in this field,
describing different types of generative adversarial networks and 11 different
architectures used for style transfer, LSRO labeling, and model globalization.
Additionally, Zhiyuan Luoet al.(52) focused exclusively on architectures that
generate artificial images by changing styles between different cameras or
databases. Lastly, Yiqi Jiang et al.(53) conducted a detailed study on the
quality of images generated by different generative adversarial network ar-
chitectures in re-identification models, analyzing the details of these artificial
images that influence the performance of the re-identification models. They
concluded that not all artificially generated images are useful for improving
the performance of re-identification models.





Chapter 3

Theoretical Framework

The theoretical framework of this research is based on theories and concepts
related to data augmentation for training and person re-identification. Data
augmentation for training refers to the technique used to increase the training
dataset of a machine learning model. This technique can improve the perfor-
mance of a model by adding more training data and allowing the model to
learn more effectively. In this context, StyleGAN is a generative adversarial
network used to generate synthetic images or videos. On the other hand,
in the field of person re-identification, different models and techniques have
been developed to recognize people in images and videos, which often require
a large training dataset to function effectively. Both disciplines, generative
adversarial networks and re-identification models, are part of a branch of ar-
tificial intelligence called machine learning, which provides a computer with
the ability to learn.

Machine learning is a discipline that is based on the idea that a ma-
chine can acquire skills to perform complex tasks without being specifically
programmed to do so. It focuses on the development of algorithms and tech-
niques that allow a machine to learn automatically from data. It is possible
to program a computer to learn in various ways, such as exploring the web,
reading books, playing games, or interacting with people. A machine learn-
ing program can learn any task that can be mathematically coded. This
discipline is used in a wide variety of applications, such as pattern recog-
nition, result prediction, fraud detection, and natural language processing.
Machine learning algorithms and techniques are used in applications such
as recommendation systems, personal assistants, medical diagnosis systems,
and email spam detection systems.

25
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Within machine learning, there is a branch called deep learning. Deep
learning is a machine learning technique that focuses on the development of
deep neural network models. Deep neural networks are computing networks
that are inspired by the functioning of the human brain and are used to
perform complex tasks such as pattern recognition and image classification.
It differs from other machine learning techniques in that it uses deep neural
networks with many layers of processing. These processing layers allow deep
neural networks to learn complex and abstract features in input data and
use them to perform complex tasks. It is used in a wide variety of appli-
cations, such as pattern recognition, image classification, natural language
processing, and synthetic content generation. Deep neural networks are used
in applications such as voice recognition systems, recommendation systems,
and medical diagnosis systems.

3.1 Artificial Neural Networks

To understand the importance of artificial neural networks (ANNs), it is nec-
essary to understand what these networks are. An artificial neural network
is a simplified model of the functioning of the brain, which is composed of
basic processing units called neurons. These neurons are grouped and or-
ganized into layers: the input layer where each artificial neuron represents
an input data, hidden layers, and the output layer that extracts the output
or target data. ANNs are important because they allow solving complex
problems in different fields such as medicine, robotics, computer science, and
industry, among others, thanks to their ability to learn autonomously and
process large amounts of information.
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Figure 3.1: Example of a neural network consisting of an input layer of three
neurons, a hidden layer, and an output layer of two neurons.

Neurons in artificial neural networks are similar to biological neurons, with
input connections through which they receive stimuli, perform internal com-
putations, and generate an output value.

Figure 3.2: Example of a neuron composed of three input elements x and
their respective weights w.
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The artificial neuron works as a function, which performs the weighted sum of
the input values by a value called weight. By multiplying them, it generates
a value that indicates the intensity with which that input value affects the
neuron. The output of the artificial neural network is given by the following
equation.

z =
n∑
i

xiwi + b (3.1)

The output signal of an artificial neuron is given by the following equation,
where y is the output signal, f is the activation function of the neuron, wi are
the weights of the neuron’s links, xi are the input signals of the neuron, and b
is the bias term, which gives us greater control over the function. Essentially,
it is another connection to the neuron where the input variable has a value
of 1 and can be controlled by the assigned weight.
The activation function of a neuron is used to determine the neuron’s output
signal based on its input signal and the weights of its links. The most com-
monly used activation functions in artificial neural networks are the sigmoid
function, the hyperbolic tangent function, and the ReLU function.
The sigmoid function is a non-linear function that takes an input value and
transforms it into an output value in the range of 0 to 1. This function
is used in artificial neural networks to model binary classification problems,
such as the classification of images into two categories. The sigmoid function
is mathematically represented as:

f(x) =
1

1 + e−x

The hyperbolic tangent function is a nonlinear function that takes an in-
put value and transforms it into an output value in the range of -1 to 1.
This function is used in artificial neural networks to model multiclass classi-
fication problems, such as image classification into multiple categories. The
hyperbolic tangent function is mathematically represented as:

f(x) = tanh(x) =
ex − e−x

ex + e−x

The ReLU function is a non-linear function that takes an input value and
transforms it into an output value in the range of 0 to ∞. This function
is used in artificial neural networks to model regression problems, such as
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predicting a numerical value from a set of features. The ReLU function is
mathematically represented as:

f(x) = max(0, x)

The purpose of an artificial neural network (ANN) is to find the weights
values in such a way that it minimizes the cost or error function, which
reflects if the model is approaching the desired result.
The cost functions used in an artificial neural network can be mathematically
represented by the following equations:
Cross-entropy loss:

J = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

Where J is the cost function, N is the number of examples in the training
dataset, yi is the expected output for example i, and ŷi is the output obtained
by the model for example i.
Mean Squared Error (MSE):

J =
1

2N

N∑
i=1

(yi − ŷi)
2

Where J is the cost function, N is the number of examples in the training
dataset, yi is the expected output for example i, and ŷi is the output obtained
by the model for example i.
The binary distortion function can be mathematically represented as:

J =
1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi))

Where J is the cost or loss function, N is the number of examples in the
training data set, yi is the expected output for example i, and ŷi is the
output generated by the model for example i.
KL divergence function:

J =
1

N

N∑
i=1

yi log(
yi
ŷi
)− yi + ŷi



30 CHAPTER 3. THEORETICAL FRAMEWORK

Where J is the cost function, N is the number of examples in the training
dataset, yi is the expected output for example i, and ŷi is the output obtained
by the model for example i.
The combination of multiple neurons in layers and the creation of multiple
layers makes it possible to create more complex artificial neural network
models. The number of layers determines the depth of the model, giving rise
to the name deep learning.

3.2 Generative Adversarial Networks

Within adversarial neural networks, a model proposed in the work of Ian
Goodfellow et al. (10) emerged in 2014, presenting a revolutionary idea called
generative adversarial network (GAN).
A generative adversarial network (GAN) is a type of machine learning model
used to generate high-quality synthetic content. A GAN consists of two com-
ponents: a generator network and a discriminator network. The generator
network is responsible for generating synthetic content, while the discrimina-
tor network is responsible for evaluating the quality of the content generated
by the generator network.
The generator network is an artificial neural network that receives a random
vector as input and returns a synthetic image as output. It consists of several
layers of nodes or neurons connected by links or weights and uses nonlinear
activation functions to process input signals and generate output signals. The
generator network is trained using a machine learning algorithm that allows
it to improve its performance in the task of generating synthetic content.
The discriminator network is an artificial neural network that receives an
image as input and returns a real value as output. It consists of several
layers of nodes or neurons connected by links or weights and uses nonlinear
activation functions to process input signals and generate output signals.
The discriminator network is trained using a machine learning algorithm that
allows it to improve its performance in the task of evaluating the quality of
images.
The two networks are trained simultaneously and in an iterative competi-
tion. The generator network tries to generate as realistic images as possible
to deceive the discriminator network, while the discriminator network tries
to detect synthetic images generated by the generator network. This com-
petition between the two networks allows both to improve their performance
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in their respective tasks.
The global cost function of the generative adversarial network can be defined
as the sum of the individual cost functions of the generator and discriminator
networks and can be mathematically represented as:

V (D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))]

Where pdata is the distribution of the real images of the training dataset,
pz is the distribution of the random vectors used as input to the generator
network, D is the discriminator network, and G is the generator network.
The global cost function V (D,G) can be interpreted as the sum of two terms:
the first is the classification error of the discriminator network when presented
with real images from the training dataset, and the second is the classification
error of the discriminator network when presented with synthetic images
generated by the generator network. The minimization is achieved through
an optimization algorithm that allows the generative network to improve in
its task of generating synthetic content, while the discriminative network
improves in its task of evaluating the quality of the images.
In Fig. 3.3, the scheme of this network is shown, and it can be seen that
the Generator never has access to the training database; it only relies on the
data obtained through the Discriminator.

Figure 3.3: Generic GAN architecture.

This architecture is predominantly used for generating images, although it
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can also be used for other types of data, such as creating audio or text, among
others. Currently, it is also being used to improve the realistic graphics of
some video games or the generation of real-time videos.

3.2.1 StyleGAN

StyleGAN is a generative adversarial network (GAN) architecture developed
by NVIDIA in 2018 (54). This architecture has been trained to generate high-
quality images of non-existent people’s faces. In this case, it was trained with
the FFHQ database, which consists of images of people’s faces from the social
network Flickr. It uses a generative network structure based on style layers
that allow independent control of different aspects of the generated image,
such as pose, facial expression, gender, etc.
The generative network consists of an encoder module and a generator mod-
ule. The encoder module converts the input image into a style tensor, which
is a fixed-dimension vector representing various aspects of the image. The
style tensor is used as input for the generator module, which is a generative
network that uses a structure of style layers to generate a synthetic image
that approximates the input image. Once trained, the generative network
can be used to generate high-quality synthetic images that approximate the
images in the training dataset. Moreover, the structure of style layers allows
independent control of different aspects of the generated images, such as
pose, facial expression, gender, etc. This control capability in the generated
images enables the use of StyleGAN in applications such as data augmen-
tation for re-identification models. Once trained, the generator network can
be used to create high-quality synthetic images that approximate the images
from the training dataset. The Generator is a multidimensional latent space
and is shown as a mathematical space in which the input and output vectors
of an artificial neural network are represented. This space is called ”latent”
because it is not directly observed, but inferred from input and output ob-
servations. In this case, it is composed of 512 dimensions, and each of the
positions corresponds to an image (see Fig.3.4). When a random numeric
vector of size 512 is entered as input in the Generator, it generates an arti-
ficial face image. This means that each of the images that can be generated
is composed of a 512-position latent vector. Fig.3.5 shows an example of the
latent space of a two-dimensional Generator.
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Figure 3.4: Graphical representation of a Generator. Multidimensional space
where each position represents an image.

Figure 3.5: Example of a 2-dimensional Generator, where each coordinate
belongs to an image. When inputting the latent vector [0,0] as output, the
upper left image is obtained.
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Another significant property of StyleGAN was the ability to fix an issue
called entanglement or ”disentangle” that generative adversarial networks
have. This occurs when the images generated by the generator network get
entangled with each other, meaning that different aspects of the image, such
as pose, gender, facial expression, etc., become mixed or confused. Imagine
having the latent vectors of two face images, the first being a girl’s face and
the second an adult woman’s face. If we interpolate between those two images
in a model with the entanglement issue, we could find completely random
images in between, whereas, with the StyleGAN model, the interpolation is
coherent and smooth. Fig. 3.6 graphically exemplifies this problem.

Figure 3.6: The problem of entanglement. From image 1, an interpolation is
made to image 2. a) interpolation without the problem of entanglement. b)
interpolation with the problem of entanglement. As can be seen, interpola-
tion a) is much smoother and more coherent.

Its architecture is based on progressive generative networks or ”progressive
GANs,” which is a model of adversarial generative networks that allows for
the generation of higher resolution images. During the image generation
process, it starts with very small images, for example, 4x4 pixels, and scales
them up to the desired image size. This method is very effective in obtaining
high-quality images. In the architecture image of StyleGAN, it can be seen
how the image starts with a size of 4x4 pixels and gradually increases to, in
this case, a size of 1024x1024.
Every time the size of the image is increased, it passes through an AdaIN
layer, which stands for ”Adaptive Instance Normalization.”
AdaIN is based on the idea that the style of an image can be represented
by the distribution of its visual features. Therefore, when transferring the
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style of one image to another, the distribution of its features is modified to
resemble the distribution of the source image.
Mathematically, this can be represented as a normalization and scaling op-
eration of the visual features of the target image. Consider a target image x
and a source image s. The AdaIN operation can be written as:

y =
x− µx

σx

⊙ σs + µs

In this equation, µx and σx represent the mean and standard deviation of
the visual features of the target image x, respectively. On the other hand,
µs and σs represent the mean and standard deviation of the visual features
of the source image s.
The ⊙ operation represents the element-wise product between two vectors
and is used to apply the standard deviation of the source image to the nor-
malized target image.
The AdaIN operation can be interpreted as a normalization of the target
image, followed by a scaling of its visual features using the standard deviation
of the source image. In this way, the target image is given the same style as
the source image while preserving its original content.
During experiments, the StyleGAN team tried modifying the latent vector
at each AdaIN layer, and as a result, the image showed different changes
from the original. For example, starting from a latent vector of a person’s
face, if the latent vectors of the first AdaIN layers were modified, they no-
ticed changes in what they called the ”coarse” features of the image, the
following represented the ”middle” features and lastly the ”fine” features. In
Figure 3.73.83.9, several real examples can be seen by modifying the latent
vector at different AdaIN layers.

1. Coarse features. These are where the structure of the image, in this
case the face, is modified, generating completely different people.

2. Middle features. The structure of the image is the same as the original,
except for modifications to the posture.

3. Fine features. Both the structure and posture are the same, but things
like skin color, hair, eyes, etc. are modified.
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Figure 3.7: The latent vector is modified in the last layers of AdaIN .
Changes can be observed in fine features such as hair color, eye color, and
skin tone..

Figure 3.8: The latent vector is modified in the middle and last layers of
AdaIN . Changes in both medium and fine features can be observed. The
face structure is modified while the posture remains the same..
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Figure 3.9: The latent vector is modified in the early layers of AdaIN .
Changes in coarse characteristics, such as the image structure, can be ob-
served, while the hair or skin color remains the same..

The flexibility of StyleGAN makes it a highly attractive architecture; how-
ever, it presents an important limitation. As can be seen in its architecture,
images are always generated from a latent vector, while other generative ad-
versarial network (GAN) architectures have the ability to create variations
in pre-existing images. To achieve the goal of altering a real image with
StyleGAN, encoders are used. An encoder is a component of a GAN that
transforms an input image into a latent feature vector. This latent feature
vector represents the input image in a latent space, which is used as input
for the generative part of the GAN.

StyleGAN Encoder

Within the scientific literature, there are several StyleGAN encoders. Its
operation is quite simple: a neural network takes an image as input and
produces the latent vectors as output, which are then fed into the Style-
GAN generator to generate an initial real image with the help of StyleGAN.
Regardless of whether or not these images were used in the training of the
generator, each input image will always find a corresponding image within
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the generator’s latent space (Fig. 3.11).

Figure 3.10: Left - real images. Right - obtained through the encoder.
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Figure 3.11: Izquierda - imágenes reales. Derecha - obtenidas a través del
codificador.
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Generic explanation of how the training of a StyleGAN encoder works.

1. An image from the same database used to train the StyleGAN generator
is introduced.

2. The model being trained generates its latent vectors.

3. The latent vectors are introduced into the pre-trained StyleGAN gen-
erator and an output image belonging to the latent space is obtained.

4. The input image and the output image are compared with a metric for
comparing images, such as LPIPS, and the weights of the encoder are
updated.

5. The pre-trained StyleGAN generator never modifies its weights.

Once the encoder is trained, it works as follows:

1. The real image is introduced as input into the encoder.

2. The encoder generates the corresponding latent vectors for the image.

3. The latent vectors are introduced into the StyleGAN generator to ob-
tain the representation of the real image within the latent space.

4. Interpolations are made in the StyleGAN generator to obtain variations
of the input image.
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3.3 Re-identification model

In the literature, we can find solutions from as early as 1996, such as the work
by Q. Cai et al. (55), which attempts to solve the re-identification problem.
Currently, the most widely used method is the use of a neural network as a
feature extractor.
The functioning of the re-identification model is straightforward.

1. A database with labeled images of people obtained from different se-
curity cameras is needed.

2. The model is supervisedly trained to classify a certain finite number
of people from the training set. For example, using the Market 1501
database, it is trained to classify 751 people, and we can say that we
have a model that can detect 751 people.

Once the model is trained and to use it with the test set, the following steps
are followed:

1. Each of the images is input into the model as input, and each one
obtains its vector of size 751, the number of people with which it was
trained. Representing the proportion of each of the 751 people that the
input person represents. In Fig. ?? it can be observed more easily.

2. We obtain the vector that represents the image of the person we want
to search for and measure the distance with each of the other vectors
that represent the other images of people. The use of cosine distance
or Euclidean distance is recurrent in the literature, both are measures
of similarity between two vectors in a vector space.

3. A distance-based classification of all the images where we are looking
for that person is made, and the one with the shortest distance means
that the image is more similar to the original, meaning that it is likely
the same person.

There is no model that returns whether or not it is the same person. The
classification model is used as a feature extractor, and based on these features,
the distance between the vector of the image of the person being searched
for and the rest of the images is calculated.





Chapter 4

Methodology

In this chapter, we provide a detailed description of the approach used to
conduct the study. We explain the methods and techniques used for data
collection and analysis, as well as the tools and platforms utilized. Addition-
ally, technical details are provided on image generation and re-identification
model training. The methodology proposed for the development of the study
is divided into two sections. The first section focuses on training the genera-
tive adversarial network and generating artificial images. The second section,
on the other hand, focuses on training and operating the re-identification
model. The methodology can be summarized with the following points:
Generation of artificial images

• Training the StyleGAN3 generative adversarial network.

• Generating multiple artificial images of people in different postures.

• Using a real image of a person from the database as a base to generate
artificial images of that same person in different postures.

• Filtering images by automatically removing generated images that con-
tain noise or were generated incorrectly.

Re-identification model

• Designing the architecture and training the re-identification model.

• Running tests on the re-identification model.

43



44 CHAPTER 4. METHODOLOGY

Figure 4.1: Architecture - Generation of artificial images.

Figure 4.2: Architecture - Re-identification.
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4.1 Generation of Artificial Images

To generate artificial images, we will use the StyleGAN3 generative adver-
sarial network architecture (2). It is an image generative model developed
by the Nvidia research team in 2021. It is an improved version of the Style-
GAN2 model that is characterized by its ability to generate high-quality and
realistic images in a wide range of content categories.
StyleGAN3 uses a deep learning approach based on generators and discrimi-
nators. The generator is a neural network that is trained to generate images
that are as realistic as possible. To do this, a set of real images is shown to
the generator, and it is asked to generate images that resemble them. As it
is trained, the generator learns to extract relevant features from real images
and use them to generate images that are as realistic as possible.
The discriminator is a neural network that is trained to distinguish between
real and generated images. It is shown both real and generated images and
asked to determine which ones are real and which ones are generated. As it is
trained, the discriminator learns to identify the characteristics that differen-
tiate real images from generated images, and it is used to guide the training
of the generator toward generating more realistic images.
StyleGAN is pre-trained with 25 million faces images, of which 70,000 are
high-quality 1024 × 1024 pixel real faces from the FFHQ database, and the
rest were generated by the Discriminator, as shown in its detailed architecture
in Fig.4.3. Currently, StyleGAN3 functions as a generator of high-quality
faces, as shown in Fig.4.6. We will apply the transfer learning process to
retrain StyleGAN3, as shown in Fig. 4.4.
Transfer learning is a technique in which a machine learning model that has
been trained to perform a specific task is used as a starting point for training
another model to perform a different task. Instead of training the new model
from scratch, the knowledge and skills acquired by the original model are
leveraged to initiate the training of the new model in a more advanced state.
In this way, the time and effort required to train the new model is reduced
and its performance is improved.
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Figure 4.3: StyleGAN. Architecture of the Generator and Discriminator (8)

Figure 4.4: Diagram - Transfer Learning.
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Figure 4.5: Artificially generated people using StyleGAN3. None of these
people exist in reality..

For the retraining of StyleGAN3, the Market-1501 dataset was used, which
consists of 51,247 images of 1,501 different people captured by six different
cameras. To evaluate the performance of StyleGAN, the ”Fréchet inception
distance” (FID) metric was used, proposed by P. Dimitrakopoulos et al.,
2017 (56). This distance metric is used to measure the similarity between
two distributions of images. The FID metric is based on the idea that the
distance between two distributions of images is the same as the distance be-
tween the features of the images extracted from a deep neural network. To
calculate the FID distance between two distributions of images, first the fea-
tures of each distribution are extracted using a deep neural network, and then
the distance between those features is calculated using the Fréchet distance.
Mathematically, the FID distance between two distributions of images can
be calculated as follows:

FID = |µ− µw|2 + tr(σ + σw − 2(σσw)
1/2) (4.1)

It compares the mean and covariance of the real and fake images by obtaining
the data from one of the deeper layers of the neural network, which is closer
to the output data. It aims to mimic human perception to identify the
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similarity between two images using the Discriminator as a feature extractor.
If the obtained value is zero, it indicates that the generated and real data
are identical, which means that the lower the obtained value, the greater the
similarity between the generated images and the real images.

Figure 4.6: Images from the Market-1501 dataset.

Two approaches were implemented for generating images: the first is a com-
pletely random generation of artificial people, and the second is using a real
person’s image to generate variations of it, as shown in Fig. 4.1.

• Generation of artificial people images.

Using a random number, also known as a seed, the Generator assigns
a latent vector that corresponds to an image. To obtain variations of
the original image, another random latent vector can be used, through
another seed or through interpolations. In the different AdaIN layers
of the model, also known as style mixing, the latent vector is modified,
obtaining different variations of the original image. It is possible to
achieve everything from a total change in the structure of the image to
more subtle changes, such as changes in tone, lighting, colors, satura-
tion, among others. Another way to generate variations of the original
image is by modifying the original latent vector through interpolations,
as shown in Fig. 4.8.

Fig. 4.7 exemplifies how latent vectors are mixed to obtain variations
of the original image.
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• Generation of artificial images of real people.

As explained earlier, to do this, a model, an encoder, must be trained
that is capable of obtaining the latent vector of a real image. In this
case, the StyleGAN3-editing model (57) has been used and trained on
the PsP encoder developed by Richardson et al (58). The encoder is
part of a neural network that processes the input information and con-
verts it into an internal representation that can be used by StyleGAN3
to generate the version of the real image within the latent space.

The LPIPS metric, Learned Perceptual Image Patch Similarity, is used
for the loss function, which compares the real image with the one ob-
tained in the generator. It is a measure of the distance or difference
between two images in terms of their perceived similarity by a human
observer. This metric is based on a pre-trained neural network called
VGG-16, which is designed to recognize patterns in images. The idea
behind LPIPS is that if two images have a small LPIPS distance, then
they are perceived as similar by a human observer.

Mathematically, the LPIPS metric is calculated as follows:

First, the VGG-16 network is used to extract a representation of each
of the two images in question. This representation is called a ”feature
map” and is a three-dimensional tensor that contains information about
the visual features present in each image. We denote these feature maps
as f1 and f2.

Next, the Euclidean distance between the two feature maps is calcu-
lated. This distance is interpreted as the perceived similarity between
the two images. The smaller this distance is, the more similar the
images will be. The Euclidean distance between f1 and f2 is defined
as:

dist(f1, f2) = |f1 − f2|2

The process of training the encoder is shown in Fig. 4.9.

Once the latent vector of the real image is obtained within the latent
space of StyleGAN3, new images are generated in the same way as in
the previous case.
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Figure 4.7: Starting from the initial latent vector, new images are generated.
To mix styles in the blue layers , the latent vector from other images is
introduced, while the white layers receive the latent vector from the original
image.

Figure 4.8: Example of interpolation from an input image of a girl to her
adulthood.
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Figure 4.9: Training of the StyleGAN3 encoder.

In order to automate the filtering of the generated images, it is necessary to
implement a filtering process. It is possible that some images may contain
noise or distortions.
To measure and discard images generated by the generative adversarial net-
work, metrics based on the quality of the generated data have been used.
The first filter applied is a pedestrian detection model, and to measure the
similarity of the generated images, the structural similarity index measure
(SSIM) metric has been used.

• YOLOv4 Tiny Filtering

YOLOv4 Tiny, a work proposed by Z. Jiang et al (59), is a reduced
version of the YOLOv4 model, designed to detect objects in images
and videos. YOLO (You Only Look Once) is an object detection tech-
nique that stands out for its speed and accuracy. The “tiny” version
of YOLOv4 is particularly useful for low-power devices, as it is less de-
manding in terms of resources and can be efficiently executed on mobile
devices and low-performance computers. In general terms, YOLOv4
Tiny uses a convolutional neural network to extract features from an
image and then employs a combination of machine learning techniques
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to perform object detection. The Tiny version of YOLOv4 has been
optimized to detect pedestrians with a precision and speed comparable
to larger models, but with lower resource requirements. This makes it
an excellent option for real-time applications on devices with limited
capabilities.

• SSIM Filtering

The Structural SIMilarity (SSIM) metric is a measure of structural sim-
ilarity between two images. The SSIM metric is often used to evaluate
the quality of a processed image compared to an original image, and is
calculated by comparing the structural features of both images. SSIM
is based on the fact that human perception of image quality is based
on its structural content, and not just the pixel difference between two
images. Therefore, SSIM is used to measure the structural similarity
between two images and give a score that reflects the perceived quality
by a human observer.

To calculate the SSIM metric, three structural features of two images
are compared: their mean intensity, intensity variance, and intensity
covariance. SSIM is obtained from the product of these three features,
and two images are considered to have high SSIM if they have similar
mean intensity, intensity variance, and intensity covariance. The result
is obtained from the product of these three features and is denoted as:

SSIM(x, y) = l(x, y) · c(x, y) · s(x, y) (4.2)

Where x and y are the two images being compared, l(x, y) is the simi-
larity in mean intensity, c(x, y) is the similarity in intensity covariance,
and s(x, y) is the similarity in intensity variance.

The similarity in mean intensity is calculated as:

l(x, y) =
2 · µx · µy + C1

µ2
x + µ2

y + C1

(4.3)

The formula reads as follows: ”The luminance l between two images
x and y is equal to the quotient of the product of twice the mean µ
of image x and the mean µ of image y, plus the constant value C1,
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divided by the square of the mean µ of image x plus the square of the
mean µ of image y plus the constant value C1.”

Here, µx and µy are the mean intensities of images x and y, respectively,
and C1 is a constant used to avoid division by zero.

The similarity in intensity covariance is calculated as follows:

c(x, y) =
2 · σxy + C2

σx2 + σy2 + C2

(4.4)

The formula reads as follows: ”The contrast c between two images x
and y is equal to the quotient of the product of two times the correlated
standard deviation σ of images x and y plus the constant value C2, and
the sum of the square of the standard deviation σ of image x and the
square of the standard deviation σ of image y plus the constant value
C2.”

Here, σ xy is the intensity covariance between images x and y, σ x and
σ y are the intensity variances of images x and y, respectively, and C2
is a constant used to avoid division by zero.

The similarity in intensity variance is calculated as:

s(x, y) =
2 · σx · σy + C3

σx2 + σy2 + C3

(4.5)

The formula reads as follows: ”The edge similarity s between two im-
ages x and y is equal to the quotient of the product of two times the
standard deviation σ of image x and the standard deviation σ of image
y, plus the constant value C3, divided by the square of the standard
deviation σ of image x plus the square of the standard deviation σ of
image y, plus the constant value C3”.

Here, σxy is the intensity covariance between images x and y, σx and
σy are the intensity variances of images x and y, respectively, and C3
is a constant used to avoid division by zero.

In summary, the SSIM metric is calculated by comparing the mean in-
tensities, intensity covariances, and intensity variances of two images.
The SSIM is obtained as the product of the similarity in each of these
features and is used to evaluate the quality of a processed image com-
pared to an original image.
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The SSIM metric is used to evaluate the quality of a processed image
compared to an original image, and it is based on the comparison of
the structural characteristics of both images. The higher the result,
the greater the variation in the generated images.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σx2 + σy2 + c2)
(4.6)

4.2 Re-identification model

A re-identification model is an algorithm used in image processing and ar-
tificial intelligence to identify and track objects or people in a sequence of
images. These models are based on comparing visual features across different
images to determine whether they depict the same object or person. Math-
ematically, a re-identification model uses a similarity function to calculate
the similarity between two images. This function takes two vectors of visual
features (one from the reference image and one from the image being com-
pared) and returns a value indicating the similarity between the two images.
If the value returned by the similarity function exceeds a certain threshold,
it is determined that the images correspond to the same object or person.
To calculate the vectors of visual features, the model uses a neural network
that has been previously trained on a dataset of labeled images. The neu-
ral network extracts relevant features from the images and groups them into
a feature vector. These vectors are then used in the similarity function to
determine the similarity between images.
The architecture proposed in this work is shown in Fig. 4.2. It uses a convo-
lutional neural network Resnet50, in which the last layer is modified to adapt
the output to the number of people with whom the model will be trained.
During training, cross-entropy loss is employed as the loss function. This
function is defined as:

L(y, ŷ) = − 1

N

N∑
i=1

yi log ŷi

In this equation, the following terms are used:

• y: represents the real label or desired value of the output.
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• ŷ: represents the output predicted by the model.

• N : is the number of examples in the dataset.

Cross-entropy loss is a commonly used loss function in classification prob-
lems, where the output of the model is interpreted as the probability that an
example belongs to each class. The idea behind cross-entropy is that if the
model’s output is a good approximation of the true probability distribution,
then the cross-entropy loss function will have a low value. Conversely, if the
model’s output is very different from the true probability distribution, then
the cross-entropy loss function will have a high value. It is used to measure
how well the model is making predictions about the real probability distri-
bution of the classes. During model training, the loss function is optimized
to improve its accuracy in predictions. Once training is complete, the model
operates as a feature extractor, and image classification is performed. In this
work, a Resnet50 convolutional neural network was used, in which the last
layer was modified to output based on the number of people with whom the
model was trained. During training, cross-entropy loss was used to optimize
the model’s accuracy.
Each image to be evaluated is introduced into the model one by one to obtain
its corresponding feature vectors. To classify which images are of the same
person, each of the image vectors is compared to the vector of the original
image using cosine distance. It is a measure of similarity between two vectors
in a vector space. This measure is calculated using the cosine of the angle
between the two vectors and can be interpreted as the projection of the
shorter vector onto the longer vector.
Mathematically, the cosine distance between two vectors a and b can be
calculated as follows:

dc(a,b) = 1− a · b
|a||b|

In this equation, a · b is the dot product of vectors a and b, and |a| and |b|
are the norms of vectors a and b, respectively.
The cosine distance has a value between 0 and 1, where a value closer to 1
indicates greater similarity between vectors a and b, and a value closer to 0
indicates lower similarity between them. After obtaining the cosine distance
of all images, they are sorted, and the ones with a smaller cosine distance
are those that most closely match the original image, that is, those that have
been detected as images of the same person.
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In the classification section of Fig. 4.2, it is shown how images are classified
using cosine distance.



Chapter 5

Experimental Results

This chapter presents the results obtained during the experimentation. Due
to the complexity of the architecture, it has been divided into two sections.

• Image Generation

Results of the training, generation of artificial images, and filtering.

• Tests with the Re-identification Model

The training has been divided into two parts. First, the re-identification
algorithm was trained with different numbers of artificial people, and
secondly, with different numbers of artificial images of real people from
the dataset.

5.1 Image Generation

The StyleGAN3 generative adversarial network (2) was used for the genera-
tion of artificial images. The model is pre-trained with 25 million face images,
of which 70,000 are real high-quality, 512x512-pixel resolution images from
the Flickr-Faces-HQ dataset (FFHQ), and the rest were generated by the
discriminator.
In Table 5.3, the characteristics of the StyleGAN3 training are presented,
which consisted of transfer learning and subsequent retraining with 51,247
images from the Market-1501 database. Table 5.1 details the hyperparame-
ters used. To measure the performance of the training, the Fréchet Inception
Distance (60) (FID) metric was employed, which was applied to both the gen-
erated and real images. The closer the value of both, the better the image

57
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cfg gpus batch gamma kimg snap metrics

stylegan3-r 1 16 2 5000 20 fid50k full

Table 5.1: Hyperparameters used during the training of StyleGAN3. The
parameter “cfg - stylegan3-r” determines the type of training, “config
R” or rotation equivalent, which makes small modifications to the network
to allow for rotation and translation of the generated images. This ensures
that the FID metric is not adversely affected if the generated images are
rotated or moved. The training was done on a GPU, with “batch - 16”
images introduced into the network at each iteration. The regularization
weight “gamma - 2” indicates how quickly the weights are updated. The
total duration of the training was “kimg - 5000” images, with the model
being saved every “snap- 20” times (in this case, every 80,000 images). The
“metrics - fid50k full” metric was used to measure the performance of the
model during training.

Modelo Img. entrenamiento Img. pruebas Entrenamiento Hardware

StyleGAN3 51247 No aplica 2d 08h 24m Titan RTX

Table 5.2: Technical details of the StyleGAN3 training for the generation of
artificial images, including the model, the number of images used for training,
the duration of the training, and the graphics card used.

generation. As shown in Table 5.4, the performance of StyleGAN3 is signifi-
cantly superior to other generative adversarial networks trained on the same
database. As an example of the generated images, Figure 5.2 showcases the
capacity and quality of the StyleGAN3 model for generating artificial images
compared to real ones.
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Figure 5.1: Evolution of the model’s performance through the FID metric at
different epochs during the StyleGAN3 training.
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Figure 5.2: Artificial images generated randomly after training.

To generate variations of images of the same person, style mixing was used.
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In the case of the model trained with Market-1501.

Features AdaIN layers samples

Fine (12,13,14,15)

Medium (5,6,7,8,9,10,11)

Coarse (0,1,2,3,4,5)

Table 5.3: Layers used to generate new images of the same person based on
modification of their fine, middle, or coarse features.

Once the artificial images were generated, two filters were applied to discard
images that may have been generated incorrectly or contain noise.

• YoloV4 Tiny filtering

YoloV4 tiny trained model (59) was used for pedestrian detection in
the generated images. All images whose classification was below the
threshold of 0.6 were discarded, which was determined by analyzing
Fig. 5.3, which shows the different percentages of images classified as
non-pedestrians using different threshold values on the real images from
the Market-1501 database. Analyzing these data, it can be observed
that when a threshold of 0.6 is used, the percentage of incorrectly
classified images as non-pedestrians is only 6.45%, which is considered
a conservative value for use in filtering artificially generated images.
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• SSIM filtering

The structural similarity index (SSIM) (9) was used to evaluate the
similarity between two images. The methodology used to apply this
metric consisted of selecting an image of a person and comparing it
with the rest of the images of that same person in different poses. If
the similarity value was equal to one, it was considered to be the same
image. This metric was applied to the real images of the Market-1501
database, and a histogram was obtained (see Fig. 5.4). Through this
histogram, it was determined that images whose SSIM value was less
than 0.75 would be discarded.

Figure 5.3: Application of YoloV4 tiny on images from the Market-1501
database using different thresholds. The error percentage represents the im-
ages that were not classified as pedestrians.
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Método Market-1501 FID Referencia

Real 7.22 Hao Chen et al. (42)
IS-GAN 281.63 Hao Chen et al. (42)
FD-GAN 257.00 Saleh Hussin et al. (48)
PG-GAN 151.16 Zhedong Zheng et al. (7)
DCGAN 136.26 Saleh Hussin et al. (48)
LSGAN 136.26 Zhedong Zheng et al. (7)
PN-GAN 54.23 Zhedong Zheng et al. (7)
GCL 53.07 Hao Chen et al. (42)

DG-Net 18.24 Hao Chen et al. (42)
DG-GAN 18.24 Saleh Hussin et al. (48)

StyleGAN3 9.29

Table 5.4: Table comparing different generative adversarial networks (GANs)
using Fréchet Inception Distance (FID)(60) as the performance metric. All
models were trained on the Market-1501 dataset(1). The first row repre-
sents the FID value obtained by applying the metric to real images from the
dataset.

Figure 5.4: Histogram of the SSIM (9) metric on the Market-1501 dataset.
Number of images that obtained the same SSIM value. One image per person
was selected and compared to the rest of the images of that same person. As
can be seen, most of the images are around the threshold of 0.75 and above.
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Figure 5.5: A) Real images from the Market-1501 dataset. B) Artificial
images.
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a) Generation of artificial persons
During the experimentation, images of 401 artificial persons were generated
in a completely random manner, and by modifying their latent vectors, 51
images per person were generated in different poses, resulting in a total of
20,451 images (see Fig. 5.6).
The Yolo V4 filter was applied to the generated images for pedestrian detec-
tion, eliminating 3,419 images that represent 16.7% of the total. Different
examples of filtered images are shown in Fig. 5.7.
Then the SSIM filter was applied, and 386 images, or 2.3% of the total, were
discarded. Some examples of images discarded by this method can be seen
in Fig. 5.8.
After applying the filters, a total of 3,815 images were discarded (see Ta-
ble 5.5).

Figure 5.6: Seed - It is the image generated randomly to which its latent
vectors will be modified to change its mean characteristics. Generated - They
are the images that have been generated by modifying the latent vectors of
the seed image.
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Method Images Discarded %

Yolov4-tiny pedestrian detection (59) 3.419 16.7
SSIM (9) 396 2.3
TOTAL 3.815 18.6

Table 5.5: Number of discarded images during the application of different
filters.

Figure 5.7: Example of some discarded images using the Yolo V4 tiny model
for pedestrian detection.

Figure 5.8: Example of some images discarded using the SSIM (9) metric.
Starting from one of the images of a person (original image), it is compared
with the rest of the generated images of that same person.
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b) Real people images generation
In the context of generating images of real people, an encoder was used that
has been retrained with the pre-trained StyleGAN3 model on the Market-
1501 database. This encoder is the same one used in the article presented by
Yuval Alaluf et al. (57), which has proven to be highly effective in generating
images with visual quality very similar to those of real human faces. The
objective of using this encoder is to be able to encode images of real people
and find their corresponding latent vectors within the StyleGAN3 genera-
tor, which will allow for generating variations of the original image through
manipulations in the latent vectors.
To generate images of a real person, the encoder needed to be trained for
240,000 epochs (see Table 5.6).

Model Training Images Validation Images Training Method Epochs Hardware

stylegan3-editing 39466 732 3d 03h 16m 240,000 Titan RTX

Table 5.6: Technical data of the training of the model for artificial image
generation.

To evaluate the performance of the model during training, three different
loss functions were used, which measure different aspects of the quality of
the generated images. The first one is the Perceptual Similarity Metric (61)
(LPIPS), which measures the perceptual similarity between two images. The
second is L2 (62), which measures the Euclidean difference between two im-
ages. Finally, the Momentum Contrast (63) (MOCO) loss function was used,
which takes into account the correlation between the features of different im-
ages.
In Table 5.7, the fluctuation of the three loss functions can be observed in dif-
ferent epochs of the training. It is important to note that the performance of
the model can vary depending on the complexity of the input data, and that
the architecture of StyleGAN3 is originally designed to work with simpler
datasets, such as faces. That is why the performance of the model may be
affected when using more complex images, such as the full body of a person
in different poses.
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Figure 5.9: LPIPS Figure 5.10: L2

Figure 5.11: MOCO

Table 5.7: Evolution of the loss functions during training until epoch 220,000.
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Next, it can be observed in Table 5.8 that the learning is smoother and it
can be seen that the LPIPS metric is the one that improves more steadily.

Figure 5.12: LPIPS Figure 5.13: L2

Figure 5.14: MOCO

Table 5.8: Table 5.8 shows the set of loss functions during validation at
different epochs, up to epoch 220,000.

Using the model generated at epoch 220,000, the latent vectors representing
the input images were obtained. As can be seen in Fig. 5.16, the obtained
images resemble the originals, although they do not reach the quality of the
images generated in the previous point.
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Figure 5.15: Pairs of images. The real image is on the right, and its coun-
terpart obtained through the encoder in the latent space of StyleGAN3 is on
the left. It can be observed that the model performs better when showing
the full body, although it does not reach the quality of randomly generated
images.
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Method Discarded images %

Yolov4-tiny pedestrian detection (59) 12,129 16.0
SSIM (9) 1,108 1.46
TOTAL 13,237 17.46

Table 5.9: Number of images discarded during the application of different
filters.

After generating the latent vector, variations of that person in different pos-
tures were generated by modifying the latent vectors. A total of 75,788 im-
ages of 751 different people were generated. After applying different filters,
63,659 images were left, as shown in Table 5.9.

Figure 5.16: Seed - real image. Generated - are the images generated by
modifying the latent vectors of the seed image.
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5.2 Re-identification

To train the model, a batch size of 16 images was used with the hyperparam-
eter –batchsize. Only one GPU was utilized, and the model was trained
for 60 epochs in all experiments. Two types of experiments were conducted
during the study based on the type of generated artificial images: firstly,
analyzing the model’s performance when adding artificial person images
and their variations in different poses, and secondly, using artificial images
generated from real person images.

a)Using 320 artificially generated people.
During the experimentation, the model was tested with a different number
of added persons, adding ten persons at a time until reaching three hundred
and twenty. In Fig. 5.21, it can be seen that the performance of the base
re-identification model remains stable or slightly decreases and then starts to
increase. This may be due to the fact that increasing the number of persons
also increases the number of classes, and some classes may not be as relevant
as others due to different numbers of images. Adding more persons only
generates small noise. The performance improved by 1% when adding 280
persons during training.
During training, it can be observed that the model stabilizes from epoch 40
onwards in all experiments, and there is no significant change in performance
based on the number of added persons (see Figs. 5.23, 5.24, 5.25, 5.20)
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Figure 5.17: In the left plot, we can see the loss function during the
training and validation phases of the base model without any additional
generated people. In the right plot, we can see the Rank1 error percentage
during the training and validation phases.

Figure 5.18: Adding 100 persons. Left, loss function during training and
validation. Right, Rank1 error percentage during training and validation.
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Figure 5.19: Adding 200 persons. Left, loss function during training and
validation. Right, Rank1 error percentage during training and validation.

Figure 5.20: Adding 320 persons. Left, loss function during training and
validation. Right, Rank1 error percentage during training and validation.
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Pers. Img. Rank
0 0 Rank@1:0.893112 Rank@5:0.964964 Rank@10:0.977732 mAP:0.742632
10 473 Rank@1:0.888955 Rank@5:0.964074 Rank@10:0.980404 mAP:0.743795
20 874 Rank@1:0.892221 Rank@5:0.961105 Rank@10:0.974169 mAP:0.745116
30 1252 Rank@1:0.891627 Rank@5:0.965558 Rank@10:0.979513 mAP:0.741414
40 1.682 Rank@1:0.890143 Rank@5:0.964371 Rank@10:0.979513 mAP:0.748799
50 2.046 Rank@1:0.894299 Rank@5:0.962589 Rank@10:0.978028 mAP:0.746853
60 2.427 Rank@1:0.901128 Rank@5:0.967637 Rank@10:0.980404 mAP:0.751229
70 2.859 Rank@1:0.892815 Rank@5:0.965261 Rank@10:0.978325 mAP:0.748843
80 3.214 Rank@1:0.892518 Rank@5:0.965261 Rank@10:0.977732 mAP:0.748257
90 3647 Rank@1:0.899347 Rank@5:0.964964 Rank@10:0.979216 mAP:0.758927
100 4058 Rank@1:0.898159 Rank@5:0.964667 Rank@10:0.980998 mAP:0.755366
150 6.167 Rank@1:0.898753 Rank@5:0.965261 Rank@10:0.979513 mAP:0.761433
200 8.223 Rank@1:0.896378 Rank@5:0.967340 Rank@10:0.980701 mAP:0.763768
250 10.307 Rank@1:0.893705 Rank@5:0.964964 Rank@10:0.980107 mAP:0.762484
280 11.244 Rank@1:0.903504 Rank@5:0.966746 Rank@10:0.982185 mAP:0.767955
300 12.320 Rank@1:0.896081 Rank@5:0.963777 Rank@10:0.978919 mAP:0.768727
320 14.371 Rank@1:0.896675 Rank@5:0.965855 Rank@10:0.978622 mAP:0.769509

Table 5.10: Results of training with a different number of added people. The
first row is the base, without adding any images.
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Figure 5.21: Performance of some models trained with different numbers of
artificially generated persons (see Table 5.10). Adding 0, 40, 80, 120, 160,
200, 240, 280, and 320 persons.
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Figure 5.22: Results of re-identification model. Comparison between the
results of the base model ( ) and the model trained after adding 280 artificial
persons ( ). The query is the image of the person to be searched for, and
the following images represent the model’s output, with green indicating a
correct match and red indicating an error.



78 CHAPTER 5. EXPERIMENTAL RESULTS

b) Adding artificial images in different poses to each real person.
During the experimentation, we tested adding more images to each person in
the training batch, adding them in increments of five. In Fig. 5.21, it can be
observed that the performance of the base re-identification model worsens as
we add more images, with performance decreasing by up to 8% when adding
100 images per person. This is due to the poor quality of the generated
images, which appear very diffused compared to the real training images.
Similarly to the previous section, during training, it can be observed that
the model stabilizes after epoch 40 in all experiments, with no significant
change in performance based on the number of images added per person (see
Figure) 5.23, 5.24, 5.25, 5.20).
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Figure 5.23: Base, without adding any images. Left, loss function during
training and validation. Right, Rank1 error percentage during training
and validation.

Figure 5.24: Adding 35 images to each person. Left, loss function during
training and validation. Right, Rank1 error percentage during training
and validation.
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Figure 5.25: Adding 100 images to each person. Left, loss function during
training and validation. Right, Rank1 error percentage during training
and validation.
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Pers. Img. Rank
0 0 Rank@1:0.893112 Rank@5:0.964964 Rank@10:0.977732 mAP:0.742632
751 5 Rank@1:0.886876 Rank@5:0.959620 Rank@10:0.975950 mAP:0.719692
751 10 Rank@1:0.878860 Rank@5:0.958432 Rank@10:0.977138 mAP:0.704901
751 15 Rank@1:0.870546 Rank@5:0.958729 Rank@10:0.969715 mAP:0.686172
751 20 Rank@1:0.865796 Rank@5:0.950119 Rank@10:0.972981 mAP:0.674047
751 25 Rank@1:0.861342 Rank@5:0.955166 Rank@10:0.971793 mAP:0.663773
751 30 Rank@1:0.850950 Rank@5:0.951010 Rank@10:0.969121 mAP:0.654492
751 35 Rank@1:0.845606 Rank@5:0.940915 Rank@10:0.964074 mAP:0.635790
751 40 Rank@1:0.841449 Rank@5:0.944477 Rank@10:0.966746 mAP:0.640035
751 45 Rank@1:0.826306 Rank@5:0.935273 Rank@10:0.961105 mAP:0.630469
751 60 Rank@1:0.829869 Rank@5:0.938836 Rank@10:0.960214 mAP:0.624382
751 70 Rank@1:0.832245 Rank@5:0.942102 Rank@10:0.965855 mAP:0.623470
751 85 Rank@1:0.825713 Rank@5:0.935570 Rank@10:0.959620 mAP:0.614014
751 105 Rank@1:0.817399 Rank@5:0.932304 Rank@10:0.958729 mAP:0.605653
751 135 Rank@1:0.813539 Rank@5:0.931710 Rank@10:0.958135 mAP:0.601084

Table 5.11: Results of training with different numbers of artificially generated
people. The first row is the base, without adding any images.

Figure 5.26: Performance of some models trained with different number of
artificial images per person (see Table 5.11). Adding 0, 10, 20, 30, 40, 50,
60, 70, 80, 90, 100, 110 and 120 images per person.





Chapter 6

Conclusions and Future Work

The use of generative adversarial networks to augment data is a promising
technique to improve performance in re-identification models. The results
obtained in our experiment demonstrate that this technique is effective in
generating high-quality data and the versatility to generate modifications of
them.
As a result of the experimentation, it was observed that by adding totally
artificial people, the re-identification model could improve its performance
by 1%. The same could not be achieved with the augmentation of images of
existing people because the encoder failed to obtain latent vectors similar to
the real images. This may be because these tools are prepared to work with
faces and not with images as complex as a whole body.
The use of these generative adversarial networks allows for the use of fewer
original data in training, which can reduce resource and time requirements
in the model training process. In summary, the use of generative adver-
sarial networks in the field of re-identification is a valuable technique that
can provide a significant improvement in the performance of re-identification
models. They allow adapting to different datasets and situations, making it
a valuable tool not only for the field of re-identification but also for other
fields where data generation and improvement are required.
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As future work, fine-tuning the encoder could improve its performance in
generating latent vectors. Also, performance could be improved by apply-
ing other filters that eliminate images of poorer quality. Due to the large
number of images, this process should be automated. Another option would
be to generate data using pose templates, that is, training StyleGAN3 in a
supervised manner with images of people in different poses. Other gener-
ative adversarial networks could be used, but for this case, I consider that
StyleGAN has generated high-quality and diverse artificial images. Another
possibility would be to change the paradigm of re-identification models. Cur-
rently, it is based on the Resnet50 neural network with slight modifications
used as a feature extractor. An interesting proposal would be to use the
latent vectors in StyleGAN3, that is, to measure the cosine distance between
images and their latent vectors within StyleGAN3. But for this, the encoder
must be functioning correctly.
Currently, we are experiencing a boom in artificially generated content, such
as diffusion models. A diffusion model is a type of mathematical model that
can be used to generate artificial data. This model is based on the diffusion
equation, which is a differential equation that describes how a quantity is
dispersed in a continuous medium. The idea is that if the diffusion of a
quantity in a continuous medium can be modeled, then artificial data that is
similar to real data can be generated.
In the context of re-identification, a diffusion model could be used to generate
artificial data of people in different scenes. This artificial data could be used
to train a re-identification model, which could increase its performance. For
example, the open-source Stable Diffusion model has been a watershed in
the generation of artificial images and could be very interesting to see how
it can behave for the generation of images of people.
As can be seen, there are several ways to approach and solve the problem,
and thanks to advances in generative model architectures, it is possible to
propose a wide variety of solutions to improve the performance of any model
that requires artificially increasing its training data.
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